Pyrolysis

The word is Pyrolysis coined from the Greek-derived elements pyro “fire”, “heat”, “fever” and lysis “separating”.

The Pyrolysis (or devolatilization) Process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition.

In this treatment, material is exposed to high temperature, and in the absence of oxygen goes through chemical and physical separation into different molecules. The decomposition takes place thanks to the limited thermal stability of chemical bonds of materials, which allows them to be disintegrated by using the heat.

Thermal decomposition leads to the formation of new molecules. This allows to receive products with a different, often more superior character than original residue. Pyrolysis products always produce solid (charcoal, biochar), liquid and non-condensable gases (H2, CH4, CnHm, CO, CO2 and N). As the liquid phase is extracted from pyrolysis gas only during it’s cooling down, in some applications, these two streams can be used together when providing hot syngas directly to the burner or oxidation chamber.

Pyrolysis is one of the various types of chemical degradation processes that occur at higher temperatures (above the boiling point of water or other solvents). It differs from other processes like combustion and hydrolysis in that it usually does not involve the addition of other reagents such as oxygen (O2, in combustion) or water (in hydrolysis). During the pyrolysis, a particle of material is heated up from the ambient to defined temperature. Pyrolysis produces solids (char), condensable liquids (tar), and uncondensing/permanent gasses.

The process is used heavily in the chemical industry, for example, to produce ethylene, many forms of carbon, and other chemicals from petroleum, coal, and even wood, to produce coke from coal. It is used also in the conversion of natural gas (primarily methane) into hydrogen gas and solid carbon char, recently on an industrial scale. Aspirational applications of pyrolysis would convert biomass into syngas and biochar, waste plastics back into usable oil, or waste into safely disposable substances.

Specific types of pyrolysis include:

  • Carbonization, the complete pyrolysis of organic matter, which usually leaves a solid residue that consists mostly of elemental carbon.
  • Methane pyrolysis, the direct conversion of methane to hydrogen fuel and separable solid carbon, sometimes using molten metal catalysts.
  • Hydrous pyrolysis, in the presence of superheated water or steam, producing hydrogen and substantial atmospheric carbon dioxide.
  • Dry distillation, as in the original production of sulfuric acid from sulfates.
  • Destructive distillation, as in the manufacture of charcoal, coke and activated carbon.
  • Caramelization of sugars.
  • High-temperature cooking processes such as roasting, frying, toasting, and grilling.
  • Charcoals burning, the production of charcoal.
  • Tar production by destructive distillation of wood in tar kilns.
  • Cracking of heavier hydrocarbons into lighter ones, as in oil refining.
  • Thermal depolymerization, which breaks down plastics and other polymers into monomers and oligomers.
  • Ceramization involving the formation of polymer derived ceramics from preceramic polymers under an inert atmosphere.
  • Catagenesis, the natural conversion of buried organic matter to fossil fuels.
  • Flash vacuum pyrolysis, used in organic synthesis.

Pyrolysis generally consists in heating the material above its decomposition temperature, breaking chemical bonds in its molecules. The fragments usually become smaller molecules, but may combine to produce residues with larger molecular mass, even amorphous covalent solids.

In many settings, some amounts of oxygen, water, or other substances may be present, so that combustion, hydrolysis, or other chemical processes may occur besides pyrolysis proper. Sometimes those chemicals are added intentionally, as in the burning of firewood, in the traditional manufacture of charcoal, and in the steam cracking of crude oil.

Conversely, the starting material may be heated in a vacuum or in an inert atmosphere to avoid chemical side reactions (such as combustion or hydrolysis). Pyrolysis in a vacuum also lowers the boiling point of the byproducts, improving their recovery.

When organic matter is heated at increasing temperatures in open containers, the following processes generally occur, in successive or overlapping stages:

  • Below about 100 °C, volatiles, including some water, evaporate. Heat-sensitive substances, such as vitamin C and proteins, may partially change or decompose already at this stage.
  • At about 100 °C or slightly higher, any remaining water that is merely absorbed in the material is driven off. This process consumes a lot of energy, so the temperature may stop rising until all water has evaporated. Water trapped in crystal structure of hydrates may come off at somewhat higher temperatures.
  • Some solid substances, like fats, waxes, and sugars, may melt and separate.
  • Between 100 and 500 °C, many common organic molecules break down. Most sugars start decomposing at 160–180 °C. Cellulose, a major component of wood, paper, and cotton fabrics, decomposes at about 350 °C. Lignin, another major wood component, starts decomposing at about 350 °C, but continues releasing volatile products up to 500 °C. The decomposition products usually include water, carbon monoxide CO and/or carbon dioxide CO2, as well as a large number of organic compounds. Gases and volatile products leave the sample, and some of them may condense again as smoke. Generally, this process also absorbs energy. Some volatiles may ignite and burn, creating a visible flame. The non-volatile residues typically become richer in carbon and form large disordered molecules, with colors ranging between brown and black. At this point the matter is said to have been “charred” or “carbonized”.
  • At 200–300 °C, if oxygen has not been excluded, the carbonaceous residue may start to burn, in a highly exothermic reaction, often with no or little visible flame. Once carbon combustion starts, the temperature rises spontaneously, turning the residue into a glowing ember and releasing carbon dioxide and/or monoxide. At this stage, some of the nitrogen still remaining in the residue may be oxidized into nitrogen oxides like NO2 and N2O3. Sulfur and other elements like chlorine and arsenic may be oxidized and volatilized at this stage.
  • Once combustion of the carbonaceous residue is complete, a powdery or solid mineral residue (ash) is often left behind, consisting of inorganic oxidized materials of high melting point. Some of the ash may have left during combustion, entrained by the gases as fly ash or particulate emissions. Metals present in the original matter usually remain in the ash as oxides or carbonates, such as potash. Phosphorus, from materials such as bone, phospholipids, and nucleic acids, usually remains as phosphates.

Other Uses and Occurrences

 

Pyrolysis is used in the production of chemical compounds, mainly, but not only, in the research laboratory.

The area of boron-hydride clusters started with the study of the pyrolysis of diborane (B2H6) at ca. 200 °C. Products include the clusters pentaborane and decaborane. These pyrolyses involve not only cracking (to give H2), but also recondensation.

Other Occurences :

  • Pyrolysis is used to turn organic materials into carbon for the purpose of carbon-14 dating.
  • Pyrolysis of tobacco, paper, and additives, in cigarettes and other products, generates many volatile products (including nicotine, carbon monoxide, and tar) that are responsible for the aroma and negative health effects of smoking. Similar considerations apply to the smoking of marijuana and the burning of incense products and mosquito coils.
  • Pyrolysis occurs during the incineration of trash, potentially generating volatiles that are toxic or contribute to air pollution if not completely burned.
  • Laboratory or industrial equipment sometimes gets fouled by carbonaceous residues that result from coking, the pyrolysis of organic products that come into contact with hot surfaces.

Leave a Comment