Mechanical Engineer

Mechanical engineer is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity. In addition to these core principles, mechanical engineers use tools such as computer-aided design (CAD), computer-aided manufacturing (CAM), and product lifecycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, aircraft, watercraft, robotics, medical devices, weapons, and others. It is the branch of engineering that involves the design, production, and operation of machinery.

Mechanical engineering emerged as a field during the Industrial Revolution in Europe in the 18th century; however, its development can be traced back several thousand years around the world. In the 19th century, developments in physics led to the development of mechanical engineering science. The field has continually evolved to incorporate advancements; today mechanical engineers are pursuing developments in such areas as composites, mechatronics, and nanotechnology. It also overlaps with aerospace engineering, metallurgical engineering, civil engineering, electrical engineering, manufacturing engineering, chemical engineering, industrial engineering, and other engineering disciplines to varying amounts. Mechanical engineers may also work in the field of biomedical engineering, specifically with biomechanics, transport phenomena, biomechatronics, bionanotechnology, and modelling of biological systems.

Degrees in mechanical engineering are offered at various universities worldwide. Mechanical engineering programs typically take four to five years of study depending on the place and university and result in a Bachelor of Engineering (B.Eng. or B.E.), Bachelor of Science (B.Sc. or B.S.), Bachelor of Science Engineering (B.Sc.Eng.), Bachelor of Technology (B.Tech.), Bachelor of Mechanical Engineering (B.M.E.), or Bachelor of Applied Science (B.A.Sc.) degree, in or with emphasis in mechanical engineering. In Spain, Portugal and most of South America, where neither B.S. nor B.Tech. programs have been adopted, the formal name for the degree is “Mechanical Engineer”, and the course work is based on five or six years of training. In Italy the course work is based on five years of education, and training, but in order to qualify as an Engineer one has to pass a state exam at the end of the course. In Greece, the coursework is based on a five-year curriculum and the requirement of a ‘Diploma’ Thesis, which upon completion a ‘Diploma’ is awarded rather than a B.Sc.

In the United States, most undergraduate mechanical engineering programs are accredited by the Accreditation Board for Engineering and Technology (ABET) to ensure similar course requirements and standards among universities. The ABET web site lists 302 accredited mechanical engineering programs as of 11 March 2014. Mechanical engineering programs in Canada are accredited by the Canadian Engineering Accreditation Board (CEAB), and most other countries offering engineering degrees have similar accreditation societies.

In Australia, mechanical engineering degrees are awarded as Bachelor of Engineering (Mechanical) or similar nomenclature, although there are an increasing number of specialisations. The degree takes four years of full-time study to achieve. To ensure quality in engineering degrees, Engineers Australia accredits engineering degrees awarded by Australian universities in accordance with the global Washington Accord. Before the degree can be awarded, the student must complete at least 3 months of on the job work experience in an engineering firm. Similar systems are also present in South Africa and are overseen by the Engineering Council of South Africa (ECSA).

In India, to become an engineer, one needs to have an engineering degree like a B.Tech or B.E, have a diploma in engineering, or by completing a course in an engineering trade like fitter from the Industrial Training Institute (ITIs) to receive a “ITI Trade Certificate” and also pass the All India Trade Test (AITT) with an engineering trade conducted by the National Council of Vocational Training (NCVT) by which one is awarded a “National Trade Certificate”. A similar system is used in Nepal.

Some mechanical engineers go on to pursue a postgraduate degree such as a Master of Engineering, Master of Technology, Master of Science, Master of Engineering Management (M.Eng.Mgt. or M.E.M.), a Doctor of Philosophy in engineering (Eng.D. or Ph.D.) or an engineer’s degree. The master’s and engineer’s degrees may or may not include research. The Doctor of Philosophy includes a significant research component and is often viewed as the entry point to academia. The Engineer’s degree exists at a few institutions at an intermediate level between the master’s degree and the doctorate.

Mechanical engineers research, design, develop, build, and test mechanical and thermal devices, including tools, engines, and machines.

Mechanical engineers typically do the following:

  • Analyze problems to see how mechanical and thermal devices might help solve the problem.
  • Design or redesign mechanical and thermal devices using analysis and computer-aided design.
  • Develop and test prototypes of devices they design.
  • Analyze the test results and change the design as needed.
  • Oversee the manufacturing process for the device.
  • Manage a team of professionals in specialized fields like mechanical drafting and designing, prototyping, 3D printing or/and CNC Machines specialists.

Mechanical engineers design and oversee the manufacturing of many products ranging from medical devices to new batteries. They also design power-producing machines such as electric generators, internal combustion engines, and steam and gas turbines as well as power-using machines, such as refrigeration and air-conditioning systems.

Like other engineers, mechanical engineers use computers to help create and analyze designs, run simulations and test how a machine is likely to work.