Pyrolysis is the basis of several methods for producing fuel from biomass, i.e. lignocellulosic biomass. Crops studied as biomass feedstock for pyrolysis include native North American prairie grasses such as switchgrass and bred versions of other grasses such as Miscantheus giganteus. Other sources of organic matter as feedstock for pyrolysis include greenwaste, sawdust, waste wood, leaves, vegetables, nut shells, straw, cotton trash, rice hulls, and orange peels. Animal waste including poultry litter, dairy manure, and potentially other manures are also under evaluation. Some industrial byproducts are also suitable feedstock including paper sludge, distillers grain, and sewage sludge.
In the biomass components, the pyrolysis of hemicellulose happens between 210 and 310 °C. The pyrolysis of cellulose starts from 300–315 °C and ends at 360–380 °C, with a peak at 342–354 °C. Lignin starts to decompose at about 200 °C and continues until 1000 °C.
Synthetic diesel fuel by pyrolysis of organic materials is not yet economically competitive. Higher efficiency is sometimes achieved by flash pyrolysis, in which finely divided feedstock is quickly heated to between 350 and 500 °C (660 and 930 °F) for less than two seconds.
Syngas is usually produced by pyrolysis.
The low quality of oils produced through pyrolysis can be improved by physical and chemical processes, which might drive up production costs, but may make sense economically as circumstances change.
There is also the possibility of integrating with other processes such as mechanical biological treatment and anaerobic digestion. Fast pyrolysis is also investigated for biomass conversion. Fuel bio-oil can also be produced by hydrous pyrolysis.